Skip to contents

The crimemappindata package contains 47 datasets that are designed to be used in teaching crime mapping and crime analysis more generally. There are several different types of data available:

  • Point-level crime data.
  • Area-level crime counts.
  • Supporting data, such as population data and spatial boundaries.

The crimemappingdata package is licensed under the MIT Licence, but the individual datasets have been licensed by the data provider using a variety of different open-data licences. Check the manual page for each dataset for details of the relevant licence. Users are responsible for using the data in accordance with the applicable licence for a dataset.

Point-level crime data

aggravated_assaults

Dataset of 8,696 aggravated assaults in Austin, TX, in 2019.

date longitude latitude location_type location_category
2019-01-01 00:00:00 -97.71635 30.28631 residence residence
2019-01-01 00:00:00 -97.76135 30.24640 residence residence
2019-01-01 00:01:00 -97.73918 30.26679 NA NA
2019-01-01 00:15:00 -97.74007 30.26761 NA NA
2019-01-01 00:27:00 -97.83802 30.18048 residence residence
2019-01-01 00:30:00 -97.73909 30.26735 NA NA
2019-01-01 00:51:00 -97.69433 30.32696 NA NA
2019-01-01 01:00:00 -97.66867 30.43380 residence residence
2019-01-01 01:00:00 -97.70329 30.31954 NA NA
2019-01-01 01:12:00 -97.72503 30.32115 residence residence

The stand-alone version of this dataset is different from the package version. The stand-alone version is an Excel file containing three sheets. Each sheet has aggravated-assault data for 2019 for a different city: Austin, TX; Fort Worth, TX; and Seattle, WA. Students can get the same data as is in the package version of the dataset by loading the Austin sheet from the Excel file using the readxl package.

bronx_shootings

Dataset of 967 shootings in NYC in 2019 and separately of the 267 of those shootings that occurred in the Bronx.

incident_key boro occur_date murder longitude latitude
191709964 BROOKLYN 2019-01-01 TRUE -73.86616 40.66568
191739125 BROOKLYN 2019-01-01 FALSE -73.97513 40.69514
191739126 BRONX 2019-01-01 FALSE -73.89581 40.85633
191790873 BROOKLYN 2019-01-02 FALSE -73.94445 40.69817
191851037 BRONX 2019-01-03 FALSE -73.85457 40.87122
191851038 STATEN ISLAND 2019-01-03 FALSE -74.16281 40.62472
191853461 BROOKLYN 2019-01-04 FALSE -73.99288 40.57376
191949899 BROOKLYN 2019-01-04 FALSE -73.94099 40.59836
191949900 BRONX 2019-01-06 FALSE -73.89287 40.82174
191949902 BRONX 2019-01-05 FALSE -73.85087 40.83122

The stand-alone version of these datasets are CSV files.

cdmx_car_jacking

Dataset of 2,811 car jacking offences in Mexico City in 2019.

fecha_hechos longitud latitud geom
2019-05-17 17:00:00 -99.10880 19.39638 POINT (-99.1088 19.39638)
2019-05-17 23:50:00 -99.22413 19.29605 POINT (-99.22413 19.29605)
2019-05-09 22:00:00 -99.19087 19.40981 POINT (-99.19087 19.40981)
2019-05-17 17:00:00 -99.14227 19.45565 POINT (-99.14227 19.45565)
2019-05-17 21:30:00 -99.04177 19.38836 POINT (-99.04177 19.38836)
2019-05-18 09:00:00 -99.10008 19.32609 POINT (-99.10008 19.32609)
2019-05-20 08:30:00 -99.10022 19.44002 POINT (-99.10022 19.44002)
2019-05-20 21:45:00 -99.18412 19.49114 POINT (-99.18412 19.49114)
2019-05-20 23:00:00 -99.16180 19.43733 POINT (-99.1618 19.43733)
2019-05-21 14:30:00 -99.18892 19.38602 POINT (-99.18892 19.38602)

The stand-alone version of this dataset is a geopackage file.

chicago_aggravated_assaults

Dataset of 148,636 aggravated assaults in Chicago between 2010 and 2019.

date loc_cat longitude latitude district
2010-01-01 00:05:00 residence -87.6277 41.7922 2
2010-01-01 00:12:00 street -87.6683 41.7513 6
2010-01-01 00:30:00 hotel -87.6242 41.8727 1
2010-01-01 00:30:00 street -87.6478 41.7536 6
2010-01-01 00:54:00 street -87.6446 41.7720 7
2010-01-01 01:15:00 street -87.7311 41.8984 11
2010-01-01 01:45:00 street -87.6450 41.9228 18
2010-01-01 01:45:00 street -87.6106 41.7726 3
2010-01-01 01:48:00 hotel -87.6242 41.8727 1
2010-01-01 01:56:00 residence -87.6265 41.6916 5

The stand-alone version of this dataset is a gzipped CSV file.

cincinnati_burglary

Dataset of 8,723 burglaries in Cincinnati, Ohio, between 2016 and 2018.

incident_no offense_date offense longitude latitude
219027252 2017-05-25 00:00:00 BURGLARY -84.48973 39.14319
219027252 2017-05-25 00:00:00 BURGLARY -84.48881 39.14260
209003013 2018-10-19 12:00:00 BURGLARY -84.52658 39.12951
199004112 2018-02-27 16:10:00 BURGLARY -84.57675 39.19290
189027753 2018-10-10 11:00:00 BURGLARY -84.55841 39.12668
189027722 2018-10-12 08:00:00 BURGLARY -84.49692 39.10908
189027719 2018-10-15 12:45:31 BURGLARY -84.56619 39.10291
189026756 2018-10-04 02:45:00 BURGLARY -84.52020 39.14478
189026786 2018-10-04 03:00:00 BURGLARY -84.48522 39.12775
189026740 2018-10-03 19:10:00 BURGLARY -84.59645 39.15254

The stand-alone version of this dataset is a gzipped CSV file.

czechia_collisions and czechia_mcycle_thefts

Datasets of 5,020 traffic collisions related to alcohol or drugs and separately of 9,464 thefts of two-wheeled motor vehicles in Czechia between 2020 and 2022.

czechia_collisions
id date geom
13115324 2020-01-01 00:20:00 POINT (13.61072 50.13135)
13115389 2020-01-01 00:50:00 POINT (17.3977 50.12565)
13115431 2020-01-01 00:59:00 POINT (14.51836 48.91475)
13115509 2020-01-01 02:00:00 POINT (12.72899 49.85815)
13115524 2020-01-01 02:01:00 POINT (17.08994 49.47261)
13115595 2020-01-01 03:09:00 POINT (13.89387 50.15709)
13115660 2020-01-01 02:45:00 POINT (14.479 50.99283)
13115688 2020-01-01 03:00:00 POINT (17.04471 49.7781)
13115696 2020-01-01 01:53:00 POINT (17.11241 49.58678)
13115701 2020-01-01 04:30:00 POINT (13.79386 50.66278)
czechia_mcycle_thefts
id date geom
13115077 2020-01-01 02:00:00 POINT (16.63238 49.18592)
13115659 2020-01-01 04:21:00 POINT (15.43107 50.68324)
13115857 2020-01-01 10:45:00 POINT (14.54159 50.0986)
13117263 2020-01-01 22:58:00 POINT (13.38625 49.72525)
13117417 2020-01-02 04:28:00 POINT (14.50531 50.12157)
13117582 2020-01-02 08:24:00 POINT (16.53362 49.26413)
13117630 2020-01-02 08:29:00 POINT (17.64119 49.22275)
13118598 2020-01-02 04:30:00 POINT (14.51453 50.13658)
13119320 2020-01-03 09:24:00 POINT (14.29876 50.06083)
13119872 2020-01-02 14:35:00 POINT (14.5243 50.09214)

The stand-alone version of these datasets are geopackage files.

downtown_homicides and glenrose_heights_homicides

Two datasets of homicides in the Downtown and Glenrose Heights neighbourhoods of Atlanta, GA, in 2019. There are four rows in each dataset. The label column contains a pre-formatted label suitable for using in plotting the points on a map.

downtown_homicides
report_number label longitude latitude
190191530 400 W PEACHTREE ST NW
19 January @ 15:00
-84.38760 33.76614
190570315 171 AUBURN AVE NE @CITY WALK APARTMENTS
26 February @ 02:00
-84.38185 33.75546
192160018 241 FORSYTH ST SW
4 August @ 00:00
-84.39732 33.74827
193302338 80 JESSE HILL JR DR SE @GRADY<br>26 November @ 22:00 -84.38198 33.75168
glenrose_heights_homicides
report_number label longitude latitude
190540454 50 MT ZION RD SW
23 February @ 04:00
-84.38939 33.67086
190771445 3750 CROWN RD SW
18 March @ 16:00
-84.39397 33.65297
191672025 23 OAK DR SW
16 June @ 22:00
-84.39530 33.66918
193221226 2868 HAPEVILLE RD SW
18 November @ 13:00
-84.39311 33.67658

The stand-alone versions of these datasets are available as both CSV and geopackage files.

hungerford_shootings

Dataset of the locations of 16 shootings during the Hungerford massacre in 1987. This can be used for teaching mapping of crime series.

victims order easting northing
Susan GODFREY† 1 423168 167694
Kakaub DEAN 2 429455 167904
Roland MASON†

Sheila MASON† Marjorie JACKSON Lisa MILDENHALL | 3| 433849| 168176| |Kenneth CLEMENTS† | 4| 434044| 168133| |Roger BRERETON† Linda CHAPMAN Alison CHAPMAN | 5| 433897| 168165| |Abdur KHAN† Alan LEPETIT Hazel HASLETT George WHITE† Dorothy RYAN† Ivor JACKSON | 6| 433821| 168176| |Betty TOLLADAY | 7| 433954| 168032| |Francis BUTLER† | 8| 433956| 167787| |Marcus BARNARD† | 9| 433872| 167765| |Ann HONEYBONE | 10| 433830| 167775|

The stand-alone version of this dataset is a CSV file.

lancashire_asb and northumbria_asb

Datasets of 56,434 anti-social behaviour incidents in Lancashire and 39,706 incidents in Northumbria, England, in 2022.

lancashire_asb
month longitude latitude location lsoa_code
2022-01-01 -2.4646 53.7655 Hazelwood Close E01012607
2022-01-01 -2.4747 53.7702 Peridot Close E01012608
2022-01-01 -2.4747 53.7702 Peridot Close E01012608
2022-01-01 -2.4762 53.7684 Jasper Street E01012608
2022-01-01 -2.4668 53.7641 Lilac Road E01012608
2022-01-01 -2.4668 53.7641 Lilac Road E01012608
2022-01-01 -2.4747 53.7702 Peridot Close E01012608
2022-01-01 -2.4785 53.7706 Ruby Street E01012633
2022-01-01 -2.4796 53.7677 Pemberton Street E01012634
2022-01-01 -2.4793 53.7652 Cranshaw Drive E01012634
northumbria_asb
month longitude latitude location lsoa_code
2022-01-01 -2.0020 55.7663 Palace Green E01027377
2022-01-01 -2.0016 55.7712 Parade E01027377
2022-01-01 -2.0002 55.7675 Ness Street E01027377
2022-01-01 -2.0030 55.7668 Palace Street E01027377
2022-01-01 -2.0103 55.7586 Shopping Area E01027385
2022-01-01 -2.0134 55.7566 Grove Gardens South E01027385
2022-01-01 -2.0085 55.7581 Northumberland Road E01027385
2022-01-01 -2.0103 55.7586 Shopping Area E01027385
2022-01-01 -2.0012 55.7566 Adams Drive E01027388
2022-01-01 -2.0055 55.7582 Billendean Terrace E01027388

The stand-alone version of these datasets are tab-separated values (.tab) files. The data in these file can be used together with the lancashire_districts/northumbria_districts, lancashire_wards/northumbria_wards and lancashire_ward_pop/northumbria_ward_pop datasets to calculate area-level incidence rates.

london_attacks

Dataset of 8 fatal terrorist attacks in London from 2010 to 2018.

date latitude longitude description
2005-07-07 51.5186 -0.0813 Suicide bomb exploded on train, killing 7
2005-07-07 51.5200 -0.1678 Suicide bomb exploded on train, killing 6
2005-07-07 51.5302 -0.1241 Suicide bomb exploded on train, killing 26
2005-07-07 51.5250 -0.1291 Suicide bomb exploded on bus, killing 13
2013-05-22 51.4883 0.0623 Soldier fatally stabbed
2017-03-22 51.5008 -0.1219 Car driven at pedestrians and people stabbed, killing 5

The stand-alone version of this dataset is a CSV file.

london_crimes

Dataset of 849,409 crimes recorded in London in 2022.

month type location_type longitude latitude
1 criminal damage or arson NA -0.1349 51.5067
1 violent or sexual NA -0.3751 51.4365
1 public order Rail Station 0.0812 51.5398
1 violent or sexual NA 0.0804 51.4840
1 violent or sexual NA -0.3513 51.5078
1 other theft Hospital -0.0170 51.4536
1 criminal damage or arson NA -0.1497 51.4908
1 violent or sexual NA -0.2481 51.4637
1 violent or sexual Rail Station -0.1372 51.3200
1 robbery NA -0.1254 51.5197

The stand-alone version of this dataset is a gzipped CSV file.

medellin_homicides

Dataset of 9,360 homicides in Medellin, Colombia, from 2010 to 2019.

fecha_hecho longitud latitud sexo edad modalidad
2019-04-23 12:30:00 -75.56985 6.257226 Mujer 50 Ahorcamiento o estrangulamiento
2019-05-12 00:51:00 -75.61037 6.222806 Hombre 24 Arma de fuego
2019-05-12 02:36:00 -75.62039 6.262382 Hombre 34 Arma de fuego
2019-05-12 03:03:00 -75.56177 6.269589 Hombre 20 Arma de fuego
2019-05-12 22:40:00 -75.53269 6.236277 Hombre 34 Arma de fuego
2019-05-12 19:30:00 -75.64196 6.196195 Hombre 25 Arma de fuego
2019-05-12 04:00:00 -75.55532 6.290154 Hombre 37 Cortopunzante
2019-05-13 05:34:00 -75.55720 6.271623 Hombre 22 Arma de fuego
2019-05-12 04:50:00 -75.56665 6.240023 Mujer 21 Ahorcamiento o estrangulamiento
2019-05-14 01:00:00 -75.56220 6.249262 Hombre 29 Arma de fuego

The stand-alone version of this dataset is a CSV file. Note that the CSV file uses semi colons as column delimiters and commas as decimal separators in numbers, in accordance with Colombian practice. This file can be read with functions such as [readr::read_csv2()].

This dataset can be used together with the medellin_metro_lines and medellin_metro_stns datasets to teach topics such as finding or counting crimes within a certain distance of a facility (e.g. a metro station).

nottingham_burglary and nottingham_robbery

Datasets of 1,795 burglaries and 555 robberies in Nottingham, England, in 2022.

nottingham_burglary
month longitude latitude location lsoa_code
2022-01-01 -1.1704 53.0050 Hathersage Close E01013893
2022-01-01 -1.1916 53.0140 Fradley Close E01013879
2022-01-01 -1.2076 53.0047 Milford Close E01013880
2022-01-01 -1.2050 53.0046 Aldgate Close E01013880
2022-01-01 -1.2076 53.0047 Milford Close E01013880
2022-01-01 -1.1987 53.0057 Ravensworth Road E01013882
2022-01-01 -1.1955 53.0023 Montague Street E01013885
2022-01-01 -1.1789 52.9959 Kersall Drive E01013889
2022-01-01 -1.1810 52.9963 St Albans Road E01013889
2022-01-01 -1.1946 52.9976 Latimer Close E01013891
nottingham_robbery
month longitude latitude location lsoa_code
2022-01-01 -1.0943 52.9550 Daleside Road East E01028184
2022-01-01 -1.1968 52.9999 Main Street E01013885
2022-01-01 -1.1789 52.9959 Kersall Drive E01013889
2022-01-01 -1.1789 52.9959 Kersall Drive E01013889
2022-01-01 -1.1547 52.9951 Babbacombe Drive E01013853
2022-01-01 -1.1870 52.9888 Ryder Street E01013829
2022-01-01 -1.1942 52.9831 Sports/Recreation Area E01013830
2022-01-01 -1.1954 52.9821 Nuthall Road E01013819
2022-01-01 -1.2018 52.9788 Winsford Close E01013820
2022-01-01 -1.1520 52.9682 Thorncliffe Road E01013941

The stand-alone versions of these datasets are gzipped CSV files. The data in these files can be used together with the nottingham_wards dataset teach spatial clipping, counting incidents in areas and related topics.

nyc_shootings

Dataset of 967 shootings in New York City recorded by the New York City Police Department (NYPD) in 2019.

incident_key boro occur_date murder longitude latitude
191709964 BROOKLYN 2019-01-01 TRUE -73.86616 40.66568
191739125 BROOKLYN 2019-01-01 FALSE -73.97513 40.69514
191739126 BRONX 2019-01-01 FALSE -73.89581 40.85633
191790873 BROOKLYN 2019-01-02 FALSE -73.94445 40.69817
191851037 BRONX 2019-01-03 FALSE -73.85457 40.87122
191851038 STATEN ISLAND 2019-01-03 FALSE -74.16281 40.62472
191853461 BROOKLYN 2019-01-04 FALSE -73.99288 40.57376
191949899 BROOKLYN 2019-01-04 FALSE -73.94099 40.59836
191949900 BRONX 2019-01-06 FALSE -73.89287 40.82174
191949902 BRONX 2019-01-05 FALSE -73.85087 40.83122

The stand-alone version of this dataset is a CSV file.

This dataset can be used together with the nyc_precincts dataset to teach topics such as counting the number of crimes in particular areas.

san_francisco_robbery

Dataset of 951 personal robberies in San Francisco in 2019.

uid offense_type date_time longitude latitude
24103841 personal robbery 2019-01-01 19:50:00 -122.4021 37.78872
24103948 personal robbery 2019-01-02 08:00:00 -122.4085 37.78445
24104162 personal robbery 2019-01-03 00:30:00 -122.3900 37.75527
24104203 personal robbery 2019-01-03 03:13:00 -122.4210 37.78382
24104237 personal robbery 2019-01-03 09:30:00 -122.4723 37.72162
24104238 personal robbery 2019-01-03 09:30:00 -122.4723 37.72162
24104239 personal robbery 2019-01-03 09:30:00 -122.4723 37.72162
24104752 personal robbery 2019-01-05 02:23:00 -122.4138 37.77452
24105017 personal robbery 2019-01-06 01:00:00 -122.3979 37.78704
24105062 personal robbery 2019-01-06 10:22:00 -122.4073 37.78456

The stand-alone version of this dataset is a CSV file.

sao_paulo_homicides

Dataset of 6,214 homicides recorded by police in the immediate region of Sao Paulo, Brazil, between 2017 and 2022.

year date municipality location_type victim_sex longitude latitude
2017 2017-01-01 São Paulo Via pública Masculino -46.75288 -23.42660
2017 2017-01-01 São Paulo Via pública Masculino -46.69175 -23.46374
2017 2017-01-01 São Paulo Via pública Masculino -46.72815 -23.44609
2017 2017-01-01 Diadema Via pública Masculino -46.59971 -23.70628
2017 2017-01-01 Guarulhos Restaurante e afins Masculino -46.49450 -23.42217
2017 2017-01-01 Mauá Via pública Masculino -46.44718 -23.65284
2017 2017-01-01 São Bernardo do Campo Rodovia/Estrada Masculino -46.57781 -23.83839
2017 2017-01-02 São Paulo Via pública Masculino -46.79244 -23.68158
2017 2017-01-02 São Paulo Area não ocupada Indefinido -46.69767 -23.76990
2017 2017-01-02 Santa Isabel Area não ocupada Masculino -46.22515 -23.32094

The stand-alone version of this dataset is an Excel (.xlsx) file.

tempe_opioid_calls

Dataset of 3,379 calls to emergency services related to opioid overdoses in Tempe, Arizona, from 2017 to 2024.

year incident_date narcan_given latitude longitude
2017 2017-01-03 NA 33.4196 -111.8904
2017 2017-01-09 NA 33.3971 -111.9249
2017 2017-01-09 NA 33.4297 -111.9334
2017 2017-01-09 NA 33.3681 -111.9014
2017 2017-01-12 NA 33.4647 -111.9212
2017 2017-01-12 NA 33.4180 -111.8837
2017 2017-01-14 NA 33.4210 -111.9038
2017 2017-01-15 NA 33.3591 -111.9050
2017 2017-01-18 NA 33.3528 -111.9420
2017 2017-01-18 NA 33.3656 -111.8734

The stand-alone version of this dataset is a CSV file.

vancouver_thefts

Dataset of 21,918 thefts in the City of Vancouver in 2020.

TYPE YEAR MONTH DAY HOUR MINUTE HUNDRED_BLOCK NEIGHBOURHOOD X Y
Other Theft 2020 1 1 0 0 11XX BURNABY ST West End 490320.3 5458607
Other Theft 2020 1 1 0 0 13XX W 71ST AVE Marpole 489998.2 5450474
Other Theft 2020 1 1 0 1 18XX E GEORGIA ST Grandview-Woodland 495141.1 5458406
Other Theft 2020 1 1 0 0 2X ALEXANDER ST Central Business District 492471.3 5458985
Theft from Vehicle 2020 1 1 0 0 11XX SKEENA ST Hastings-Sunrise 497938.7 5457949
Theft from Vehicle 2020 1 1 0 10 14XX LABURNUM ST Kitsilano 488991.7 5457823
Theft from Vehicle 2020 1 1 0 30 14XX W 11TH AVE Fairview 490013.1 5456560
Theft from Vehicle 2020 1 1 0 0 33XX OAK ST South Cambie 490744.3 5455927
Theft from Vehicle 2020 1 1 0 30 42XX SKEENA ST Renfrew-Collingwood 497927.5 5454905
Theft from Vehicle 2020 1 1 0 0 45XX CLANCY LORANGER WAY Riley Park 492098.3 5454511

The stand-alone version of this dataset is a gzipped CSV file.

Area-level crime data

germany_violence_counts and japan_violence_counts

Datasets of annual counts of different types of violent crime in states of Germany in 2019 and prefectures of Japan in 2012, together with population data and GDP per capita data.

germany_violence_counts
state measure count
Baden-Württemberg GDP per capita (€1000) 45.108
Baden-Württemberg number of homicides 379.000
Baden-Württemberg number of rapes 820.000
Baden-Württemberg number of robberies 2868.000
Baden-Württemberg population 11103043.000
Bayern GDP per capita (€1000) 46.498
Bayern number of homicides 529.000
Bayern number of rapes 1067.000
Bayern number of robberies 2083.000
Bayern population 13140183.000
japan_violence_counts
prefecture measure value
Hokkaido number of homicides 55.00
Hokkaido number of robberies 121.00
Hokkaido number of rapes 48.00
Hokkaido number of violent crimes 2188.00
Hokkaido GDP per capita (¥1000) 3712.99
Hokkaido population (thousands) 5246.00
Aomori number of homicides 8.00
Aomori number of robberies 6.00
Aomori number of rapes 12.00
Aomori number of violent crimes 602.00

The format of these datasets is designed to be challenging for students, who will need to reformat the data and wrangle it to create population counts. This is designed to reflect the formats of data that are often provided by statistical agencies.

The stand-alone versions of these datasets are .rds files.

malaysia_violence_counts

Dataset of annual counts of five types of violent crime in states of Malaysia from 2006 to 2017.

region state year crime_type count
East Malaysia Sabah 2006 aggravated assault 301
East Malaysia Sabah 2006 armed robbery 8
East Malaysia Sabah 2006 murder 83
East Malaysia Sabah 2006 rape 200
East Malaysia Sabah 2006 unarmed robbery 563
East Malaysia Sabah 2007 aggravated assault 389
East Malaysia Sabah 2007 armed robbery 1
East Malaysia Sabah 2007 murder 68
East Malaysia Sabah 2007 rape 204
East Malaysia Sabah 2007 unarmed robbery 641

The stand-alone version of this dataset is a .rds file.

northants_burglary_counts

Dataset of counts of burglaries in 409 lower-layer super output areas in Northamptonshire, England, in 2020.

district lsoa count
Corby Corby 001A 6
Corby Corby 001B 7
Corby Corby 001C 5
Corby Corby 001D 29
Corby Corby 002A 9
Corby Corby 002B 3
Corby Corby 002C 4
Corby Corby 002D 4
Corby Corby 002E 4
Corby Corby 002F 4

The stand-alone version of this dataset is a .rds file.

qld_stalking

Dataset of 7,304 annual counts of stalking offences recorded by the Queensland Police Service in police divisions from 2001 to 2022.

division year stalking
Acacia Ridge 2001 6
Acacia Ridge 2002 7
Acacia Ridge 2003 13
Acacia Ridge 2004 1
Acacia Ridge 2005 6
Acacia Ridge 2006 9
Acacia Ridge 2007 12
Acacia Ridge 2008 0
Acacia Ridge 2009 3
Acacia Ridge 2010 4

The stand-alone version of this dataset is an Excel (.xlsx) file.

uttar_pradesh_murders

Dataset of counts of murders recorded by police in the 75 administrative districts of the state of Uttar Pradesh, India, in 2014.

district murder
Agra 178
Aligarh 179
Allahabad 132
Ambedkar Nagar 24
Amethi 36
Amroha 60
Auraiya 34
Azamgarh 68
Budaun 120
Baghpat 83

The stand-alone version of this dataset is a CSV file.

Supporting data

cdmx_alcaldias

Simple features (SF) object containing the boundaries of the alcaldías (boroughs) of Mexico City.

municip nomgeo geometry
9 Milpa Alta <SF polygon>
14 Benito Juárez <SF polygon>
5 Gustavo A. Madero <SF polygon>
3 Coyoacán <SF polygon>
16 Miguel Hidalgo <SF polygon>
8 La Magdalena Contreras <SF polygon>
11 Tláhuac <SF polygon>
2 Azcapotzalco <SF polygon>
6 Iztacalco <SF polygon>
10 Álvaro Obregón <SF polygon>

The stand-alone version of this dataset is a geopackage file.

chicago_police_districts

Simple features (SF) object containing the boundaries of Chicago Police Department districts.

Name Description geometry
17 District 17 <SF polygon>
20 District 20 <SF polygon>
31 District 31 <SF polygon>
31 District 31 <SF polygon>
19 District 19 <SF polygon>
25 District 25 <SF polygon>
14 District 14 <SF polygon>
31 District 31 <SF polygon>
22 District 22 <SF polygon>
5 District 5 <SF polygon>

The stand-alone version of this dataset is a geopackage file.

japan_prefectures

Simple Features (SF) object containing the boundaries of the prefectures of Japan.

adm0_en adm0_ja adm0_pcode adm1_en adm1_ja adm1_pcode geometry
Japan 日本 JP Aichi 愛知県 JP23 <SF polygon>
Japan 日本 JP Akita 秋田県 JP05 <SF polygon>
Japan 日本 JP Aomori 青森県 JP02 <SF polygon>
Japan 日本 JP Chiba 千葉県 JP12 <SF polygon>
Japan 日本 JP Ehime 愛媛県 JP38 <SF polygon>
Japan 日本 JP Fukui 福井県 JP18 <SF polygon>
Japan 日本 JP Fukuoka 福岡県 JP40 <SF polygon>
Japan 日本 JP Fukushima 福島県 JP07 <SF polygon>
Japan 日本 JP Gifu 岐阜県 JP21 <SF polygon>
Japan 日本 JP Gunma 群馬県 JP10 <SF polygon>

The stand-alone version of this dataset is a geopackage file.

lancashire_districts, lancashire_wards, northumbria_districts and northumbria_wards

Simple features (SF) objects containing the boundaries of local government wards and districts in Lancashire and Northumbria, England. Boundaries are for 2022.

lancashire_districts
objectid district geometry
E06000008 Blackburn with Darwen <SF polygon>
E06000009 Blackpool <SF polygon>
E07000117 Burnley <SF polygon>
E07000118 Chorley <SF polygon>
E07000119 Fylde <SF polygon>
E07000120 Hyndburn <SF polygon>
E07000121 Lancaster <SF polygon>
E07000122 Pendle <SF polygon>
E07000123 Preston <SF polygon>
E07000124 Ribble Valley <SF polygon>
lancashire_wards
ward_code ward_name geometry
E05001643 Anchorsholme <SF polygon>
E05001644 Bispham <SF polygon>
E05001645 Bloomfield <SF polygon>
E05001646 Brunswick <SF polygon>
E05001647 Claremont <SF polygon>
E05001648 Clifton <SF polygon>
E05001649 Greenlands <SF polygon>
E05001650 Hawes Side <SF polygon>
E05001651 Highfield <SF polygon>
E05001652 Ingthorpe <SF polygon>
northumbria_districts
objectid district geometry
E06000057 Northumberland <SF polygon>
E08000021 Newcastle upon Tyne <SF polygon>
E08000022 North Tyneside <SF polygon>
E08000023 South Tyneside <SF polygon>
E08000024 Sunderland <SF polygon>
E08000037 Gateshead <SF polygon>
northumbria_wards
ward_code ward_name geometry
E05001067 Birtley <SF polygon>
E05001068 Blaydon <SF polygon>
E05001069 Bridges <SF polygon>
E05001071 Chowdene <SF polygon>
E05001072 Crawcrook and Greenside <SF polygon>
E05001073 Deckham <SF polygon>
E05001074 Dunston and Teams <SF polygon>
E05001075 Dunston Hill and Whickham East <SF polygon>
E05001076 Felling <SF polygon>
E05001077 High Fell <SF polygon>

The stand-alone versions of lancashire_districts/northumbria_districts are in geoJSON format and the stand-alone versions of lancashire_wards/northumbria_wards are geopackage files.

lancashire_ward_pop and northumbria_ward_pop

Datasets of usual resident population in 2020 in each local government ward in Lancashire and Northumbria, England. These can be used together with the lancashire_asb/northumbria_asb and lancashire_wards/northumbria_wards datasets for teaching non-spatial joining and calculation of area crime rates.

lancashire_ward_pop
gss_code ward population
E05001643 Anchorsholme 6278
E05001644 Bispham 6291
E05001645 Bloomfield 7345
E05001646 Brunswick 6890
E05001647 Claremont 7178
E05001648 Clifton 6589
E05001649 Greenlands 6714
E05001650 Hawes Side 7010
E05001651 Highfield 6367
E05001652 Ingthorpe 6468
northumbria_ward_pop
gss_code ward population
E05001067 Birtley 8028
E05001068 Blaydon 9970
E05001069 Bridges 11515
E05001071 Chowdene 8647
E05001072 Crawcrook and Greenside 8786
E05001073 Deckham 9786
E05001074 Dunston and Teams 9359
E05001075 Dunston Hill and Whickham East 9005
E05001076 Felling 9104
E05001077 High Fell 9529

The stand-alone versions of these dataset are Excel (.xlsx) files.

medellin_metro_lines and medellin_metro_stns

Simple features (SF) objects containing the locations of metro lines and stations in Medellin, Colombia.

#> Warning in medellin_metro_lines_head$geometry <- "&lt;SF polyline&gt;":
#> Coercing LHS to a list
medellin_metro_lines
x
Error : dsn must point to a source, not an empty string.
x
<SF polyline>
medellin_metro_stns
linea nombre municipio sistema x y
A Estación Acevedo (Línea A) Medellín Metro -75.55856 6.299943
A Estación Tricentenario (Línea A) Medellín Metro -75.56472 6.290315
A Estación Caribe (Línea A) Medellín Metro -75.56940 6.278327
A Estación Universidad (Línea A) Medellín Metro -75.56583 6.269433
A Estación Hospital (Línea A) Medellín Metro -75.56333 6.263920
A Estación Prado (Línea A) Medellín Metro -75.56617 6.256850
A Estación Parque Berrío (Línea A) Medellín Metro -75.56824 6.250502
A Estación San Antonio (Línea A) Medellín Metro -75.56970 6.247194
B Estación Cisneros (Línea B) Medellín Metro -75.57515 6.249054
A Estación Alpujarra (Línea A) Medellín Metro -75.57143 6.242917

The stand-alone version of the medellin_metro_lines dataset is a zipped shapefile. The medellin_metro_stn dataset is a CSV file.

These datasets can be used together with the medellin_homicides dataset to teach topics such as finding or counting crimes within a certain distance of a facility (e.g. a metro station).

nottingham_wards

Simple features (SF) objects containing the boundaries of local government wards and districts in Nottingham, England. Boundaries are for 2022.

ward_code ward_name geometry
E05012270 Aspley <SF polygon>
E05012271 Basford <SF polygon>
E05012272 Berridge <SF polygon>
E05012273 Bestwood <SF polygon>
E05012274 Bilborough <SF polygon>
E05012275 Bulwell <SF polygon>
E05012276 Bulwell Forest <SF polygon>
E05012277 Castle <SF polygon>
E05012278 Clifton East <SF polygon>
E05012279 Clifton West <SF polygon>

The stand-alone version of this file is in geopackage format. The data in these files can be used together with the nottingham_wards dataset teach spatial clipping, counting incidents in areas and related topics.

nyc_precincts

Dataset of the 77 police precincts in New York City.

OBJECTID Precinct geom
1 1 MULTIPOLYGON (((-74.04388 4…
2 5 MULTIPOLYGON (((-73.98864 4…
3 6 MULTIPOLYGON (((-73.99969 4…
4 7 MULTIPOLYGON (((-73.97346 4…
5 9 MULTIPOLYGON (((-73.97161 4…
6 10 MULTIPOLYGON (((-74.00139 4…
7 13 MULTIPOLYGON (((-73.98156 4…
8 14 MULTIPOLYGON (((-73.97465 4…
9 17 MULTIPOLYGON (((-73.95904 4…
10 18 MULTIPOLYGON (((-73.99394 4…

The stand-alone version of this dataset is a geopackage file.

This dataset can be used together with the nyc_shootings dataset to teach topics such as counting the number of crimes in particular areas.

qld_police_divisions

Simple features (SF) object containing the boundaries of divisions of the Queensland Police Service as of 2022.

division geometry
Acacia Ridge <SF polygon>
Adavale <SF polygon>
Agnes Water <SF polygon>
Albany Creek <SF polygon>
Allora <SF polygon>
Alpha <SF polygon>
Anakie <SF polygon>
Annerley <SF polygon>
Aramac <SF polygon>
Atherton <SF polygon>

The stand-alone version of this dataset is a geopackage file.

qld_population

Dataset of usual resident population in 2016 in each Queensland Police Service division area. This can be used together with the qld_police_divisions and qld_stalking datasets, especially for teaching non-spatial joining and calculation of area crime rates.

police_division population
Acacia Ridge 40123
Adavale 101
Agnes Water 2674
Albany Creek 49336
Allora 3003
Alpha 510
Anakie 1599
Annerley 25377
Aramac 441
Atherton 12092

The stand-alone version of this dataset is gzipped CSV file.

sao_paulo_muni

Simple features (SF) object containing boundaries of municipality boundaries in the immediate region of Sao Paulo, Brazil, 2010.

code_muni name_muni geometry
31 3502754 Araçariguama <SF polygon>
45 3503901 Arujá <SF polygon>
48 3504107 Atibaia <SF polygon>
65 3505708 Barueri <SF polygon>
72 3506359 Bertioga <SF polygon>
75 3506607 Biritiba-Mirim <SF polygon>
96 3508405 Cabreúva <SF polygon>
102 3509007 Caieiras <SF polygon>
104 3509205 Cajamar <SF polygon>
110 3509601 Campo Limpo Paulista <SF polygon>

The stand-alone version of this dataset is a geoJSON file.

uttar_pradesh_districts

Simple features (SF) object containing boundaries of administrative districts in Uttar Pradesh, India.

state district_name geometry
Uttar Pradesh Agra <SF polygon>
Uttar Pradesh Bareilly <SF polygon>
Uttar Pradesh Etah <SF polygon>
Uttar Pradesh Shahjahanpur <SF polygon>
Uttar Pradesh Pilibhit <SF polygon>
Uttar Pradesh Allahabad <SF polygon>
Uttar Pradesh Pratapgarh <SF polygon>
Uttar Pradesh Jhansi <SF polygon>
Uttar Pradesh Jalaun <SF polygon>
Uttar Pradesh Jaunpur <SF polygon>

The stand-alone version of this dataset is a geopackage file.

uttar_pradesh_population

Dataset of usual resident population in 2011 in each administrative district in Uttar Pradesh. This can be used together with the uttar_pradesh_districts and uttar_pradesh_murders datasets, especially for teaching non-spatial joining and calculation of area crime rates.

code district headquarters division population area density_km2
AG Agra Agra Agra 4418797 4041 1093
AL Aligarh Aligarh Aligarh 3673889 3788 1007
AH Allahabad Allahabad Allahabad 5954391 5482 1086
AN Ambedkar Nagar Akbarpur Faizabad 2397888 2350 1020
AM Amethi Gauriganj Faizabad 2050133 2651 773
JP Amroha Amroha Moradabad 1840221 2249 818
AU Auraiya Auraiya Kanpur 1379545 2016 684
AZ Azamgarh Azamgarh Azamgarh 4613913 4054 1138
BD Budaun Badaun Bareilly 3127621 4234 2368
BG Baghpat Baghpat Meerut 1303048 5237 249

The stand-alone version of this dataset is a CSV file.